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1 Introduction

The fKdVe is derived from the propagation of dispersive shallow water waves. This applicable
equation is used in continuum mechanics, fluid dynamics, solitons turbulence, aerodynamics,
mass transport and boundary layer behavior. For more details see Jafari et al. (2008) and
references therein.

In this paper, the following fKdVe is considered (Jafari et al., 2008)

∂α

∂tα
η(x, t) + aηp(x, t)

∂α

∂xα
η(x, t) + b

∂3α

∂x3α
η(x, t) = 0, (1)

where a, b ̸= 0 are arbitrary constants coefficients and not equal to zero, η(x, t) is a field variable,
and t ∈ T (= [0, t0](t0 > 0)) is the time. Furthermore, ∂α

∂tα is He’s fractional derivative defined in
the following form (He, 2014; Hi & Sun, 2019; Liu et al., 2014; Li & He, 2020; Wang & Wang,
2019; Wang & He, 2019)

∂αη

∂tα
=

1

Γ(n− α)

∂n

∂tn

t∫
t0

(s− t)n−α−1[η0(s)− η(s)]ds. (2)

Here with the same initial condition, η0 is the solution of its continuous partner of the equa-
tion. For more details regarding the properties of fractional calculus and their applications,
the reader is advised to consult the results of the research works presented in Benson et al.
(2013); Gorenflo et al. (2001); Hilfert (2000); Lundstrom et al. (2008); Meerschaert et al. (1999);
Metzler & Klafter (1997); Rossikhin & Shitikova (1997); Roop (20063); Sabatelli et al. (2002);
Schumer et al. (2001, 2003).
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1.1 Fractional complex transform

In the follow up we consider the following general differential equation of fractional order

f(η, ηαt , η
β
x , η

2α
t , η2βx , · · · ) = 0, 0 < α ≤ 1, 0 < β ≤ 1. (3)

To illustrate the fractional complex scheme Su et al. (2013), assume know that

τ =
c1t

α

Γ(1 + α)
, and ς =

c2x
β

Γ(1 + β)
, (4)

where c1, c2 are arbitrary unknown constants. Using the essential properties of fractional calulus
we have

∂αη

∂tα
= c1

∂η

∂τ
, and

∂βη

∂tβ
= c2

∂η

∂τ
, (5)

accordingly, the fractional differential equations can be converted into ordinary differential equa-
tions.

1.2 The Daftardar-Jafari method

Consider the following equation

η(x)−N(η(x)) = f(x), x = (x1, x2, · · · , xn), (6)

where f is an arbitrary known function and N is a nonlinear operator. The solution of Eq. (6)
has the following series form Daftardar-Gejji & Jafari (2006)

η(x) =

∞∑
i=0

ηi(x). (7)

The operator N can be written as follows

N(
∞∑
i=0

ηi) = N(η0) +
∞∑
i=1

N(
i∑

j=0

ηi )− N(
i−1∑
j=0

ηj)

 . (8)

According to Eqs. (6) and (7), Eq. (8) can be written as

∞∑
i=0

ηi = f +N(η0) +

∞∑
i=1

N(

i∑
j=0

ηi )− N(

i−1∑
j=0

ηj)

 . (9)

In the follow up, one will set

η0 = f,

η1 = N(η0), (10)

ηm+1 = N(η0 + η1 + · · ·+ ηm)−N(η0 + η1 + · · ·+ ηm−1), m = 1, 2, 3, · · · .

Consequentely

(η1 + η2 + · · ·+ ηm+1) = N(η0 + η1 + · · ·+ ηm), m = 1, 2, 3, · · · , (11)

and
∞∑
i=0

ηi −N(
∞∑
i=0

ηi) = f. (12)
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The q-term approximate solution of Eq. (6) can be given as follows

η = η0 + η1 + · · ·+ ηq−1. (13)

If N is a contraction, i.e, |N(x)−N(y)|| ≤ q||x− y||, 0 < q < 1 , then

||ηm+1|| = ||N(η0+η1+· · ·+ηm)−N(η0+η1+· · ·+ηm−1)|| ≤ q||ηm|| ≤ qm||η0||, m = 0, 1, 2, 3, · · · .
(14)

In other words, in view of the Banach fixed point theorem Cherruault (1988) the series
∞∑
i=0

ηi

absolutely and uniformly converges to a solution of Eq. (6).

2 Implementation and applications

Assume know that

τ =
tα

Γ(1 + α)
, and ς =

xβ

Γ(1 + β)
. (15)

Eq. (1) can be converted into a differential equation, as follows

∂

∂τ
η(ς, τ) + aηp(ς, τ)

∂

∂ς
η(ς, τ) + b

∂3

∂ς3
η(ς, τ) = 0. (16)

The zero order solitary wave solution can be taken as the initial value of the state variable, as
follows

η0(x, t) = η(x, 0) = ksech
2
p (

p

2
√
b
(

xα

Γ(α+ 1)
+ η0)), (17)

where k =
(
(p+1)(p+2)

2a

) 1
p
and η0 is an arbitrary constant. Using the Daftardar-Jafari method,

the following results can be obtainedη(ξ, τ) = η0(ξ, τ) + IT

(
−aηp(ς, τ) ∂

∂ς η(ς, τ)− b ∂3

∂ς3
η(ς, τ)

)
,

N(η) = IT

(
−aηp(ς, τ) ∂

∂ς η(ς, τ)− b ∂3

∂ς3
η(ς, τ)

)
,

(18)

where I is an integral operator. According to Eq. (10), the iteration solution of Eq. (16) can
be written as followsη0(ξ, τ) = ksech

2
p ( p

2
√
b
(ξ + η0)),

η1(ξ, τ) = ksech
2
p ( p

2
√
b
(ξ + η0))

t√
b
tanh( p

2
√
b
(ξ + η0)),

(19)

and

η2(ξ, τ) = t
[
akp+1
√
b

sech
2
p+2( p

2
√
b
(ξ + η0)) tanh(

p

2
√
b
(ξ + η0))

+ k√
b
sech

2
p ( p

2
√
b
(ξ + η0))tanh

3( p

2
√
b
(ξ + η0))− 3kp

2
√
b
sech

2
p+2( p

2
√
b
(ξ + η0))

− kp2

2
√
b
sech

2
p+2( p

2
√
b
(ξ + η0)) tanh(

p

2
√
b
(ξ + η0))− ksech2/p( p

2
√
b
(ξ + η0))

t√
b
tanh( p

2
√
b
(ξ + η0))

− kp2

2
√
b
sech

2
p+2( p

2
√
b
(ξ + η0)) tanh(

p

2
√
b
(ξ + η0))− ksech2/p( p

2
√
b
(ξ + η0))

1√
b
tanh( p

2
√
b
(ξ + η0))

]
−t2

[
akp+1
√
b

sech
2
p+2( p

2
√
b
(ξ + η0))

(
p
2 − 3p+2

2 tanh2( p

2
√
b
(ξ + η0))

)
− 3kp2(p+2)

8b sech
2
p+2( p

2
√
b
(ξ + η0)) +

3kp(p+2)2

8b sech
2
p ( p

2
√
b
(ξ + η0))

tanh2( p

2
√
b
(ξ + η0)) +

kp3

8b sech
2
p ( p

2
√
b
(ξ + η0))− k(p+2)3

8b sech
2
p ( p

2
√
b
(ξ + η0))tanh

4( p

2
√
b
(ξ + η0))

+ 3k(p+2)2

8b sech
2
p+2( p

2
√
b
(ξ + η0))tanh

2( p

2
√
b
(ξ + η0)) +

kp2(p+2)
4b sech

2
p+2( p

2
√
b
(ξ + η0))tanh

2( p

2
√
b
(ξ + η0))

]
−t3

[
apkp+1

2b
√
b

sech
2
p+2( p

2
√
b
(ξ + η0)) tanh(

p

2
√
b
(ξ + η0))

(
p− p+2

2

)
tanh2( p

2
√
b
(ξ + η0))

]
.

(20)
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Hence, we can write the 3th-order approximate solution (ψ3) of Eq. (16) as the follows

ψ3 = η0(x, t) + η1(x, t) + η2(x, t)

= ksech2/p( p

2
√
b
(ξ + η0)) +

tα

Γ(α+1)

[
akp+1
√
b

sech
2
p+2( p

2
√
b
( xα

Γ(α+1) + η0)) tanh(
p

2
√
b
( xα

Γ(α+1) + η0))

+ k√
b
sech

2
p ( p

2
√
b
( xα

Γ(α+1) + η0))tanh
3( p

2
√
b
( xα

Γ(α+1) + η0))− 3kp

2
√
b
sech

2
p+2( p

2
√
b
( xα

Γ(α+1) + η0))

− kp2

2
√
b
sech

2
p+2( p

2
√
b
( xα

Γ(α+1) + η0)) tanh(
p

2
√
b
( xα

Γ(α+1) + η0))

−ksech
2
p ( p

2
√
b
(+ xα

Γ(α+1)η0))
tα

Γ(α+1)
√
b
tanh( p

2
√
b
( xα

Γ(α+1) + η0))

− kp2

2
√
b
sech

2
p+2( p

2
√
b
( xα

Γ(α+1) + η0)) tanh(
p

2
√
b
( xα

Γ(α+1) + η0))
]

−
(

tα

Γ(α+1)

)2 [
akp+1
√
b

sech
2
p+2( p

2
√
b
( xα

Γ(α+1) + η0))
(

p
2 − 3p+2

2 tanh2( p

2
√
b
( xα

Γ(α+1) + η0))
)

−t2
[
akp+1
√
b

sech
2
p+2( p

2
√
b
( xα

Γ(α+1) + η0))
(

p
2 − 3p+2

2 tanh2( p

2
√
b
( xα

Γ(α+1) + η0))
)

− 3kp2(p+2)
8b sech

2
p+2( p

2
√
b
( xα

Γ(α+1) + η0)) +
3kp(p+2)2

8b sech
2
p ( p

2
√
b
( xα

Γ(α+1) + η0))

tanh2( p

2
√
b
( xα

Γ(α+1) + η0)) +
kp3

8b sech
2
p ( p

2
√
b
( xα

Γ(α+1) + η0))

−k(p+2)3

8b sech
2
p ( p

2
√
b
( xα

Γ(α+1) + η0))tanh
4( p

2
√
b
( xα

Γ(α+1) + η0))

+ 3k(p+2)2

8b sech
2
p+2( p

2
√
b
( xα

Γ(α+1) + η0))tanh
2( p

2
√
b
( xα

Γ(α+1) + η0))

+kp2(p+2)
4b sech

2
p+2( p

2
√
b
( xα

Γ(α+1) + η0))tanh
2( p

2
√
b
( xα

Γ(α+1) + η0))

+kp2(p+2)
4b sech

2
p+2( p

2
√
b
( xα

Γ(α+1) + η0))tanh
2( p

2
√
b
( xα

Γ(α+1) + η0))
]

−
(

tα

Γ(α+1)

)3 [
apkp+1

2b
√
b

sech
2
p+2( p

2
√
b
( xα

Γ(α+1) + η0)) tanh(
p

2
√
b
( xα

Γ(α+1) + η0))
(
p− p+2

2

)
tanh2( p

2
√
b
( xα

Γ(α+1) + η0))

]
.

(21)

Here under, if m tends to infinity, then the iteration leads to the solitary wave solution of the
fKdVe

η(x, t) = ksech
2
p (

p

2
√
b
(

xα

Γ(α+ 1)
− tα

Γ(α+ 1)
+ η0)). (22)

Theorem 1. Suppose that the Gejji-Jafari iteration method satisfies the conditions (20) and
(21). Furthermore, suppose that

F (u) = −aηp(x, t) ∂
∂x
η(x, t)− b

∂3

∂x3
η(x, t), (23)

is a continuous function and satisfies a Lipschitz condition on its arguments. Then, our proposed
scheme to approximate the solution of Eq. (1) is convergent.

Proof. As before, we define the recurrence relation
η0 = η(x, t),

η1 = IT (−aηp0(x, t)
∂

∂x
η0(x, t)− b

∂3

∂x3
η0(x, t)), m = 1, 2, 3, · · ·

ηm+1 = N(η0 + η1 + . . .+ ηm)−N(η0 + η1 + . . .+ ηm−1),

(24)

we can rewrite η1 in terms of the kernel K(x, t)

η1 = ITK(x, t)η0(x, t). (25)

Assume now that
K1 = ∥K(x, t)∥∞ <∞, K2 = ∥η0(x, t)∥∞ <∞. (26)

Prove that
∑∞

i=0 ηi is uniformly convergent.

|η1(x, t)| ≤
∫ t

0
|K(x, t)η0(x, t)|dt ≤ K1K2δ,

|η2(x, t)| = |N(η0(x, t) + η1(x, t))−N(η0(x, t))| ≤ L
∫ t

0
|η1(x, t)|dt ≤ LK1K2

δ2

2!
,

...

|ηm+1| = |N(η0 + . . .+ ηm)−N(η0 + . . .+ ηm−1))| ≤ L
∫ t

0
|ηm(x, t)|dt ≤ LK1K2

δ(m+1)

(m+ 1)!
,

(27)
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where |t| ≤ δ. Hence
∑∞

i=0 ηi is absolutely and η(x, t) uniformly convergent and satisfies Eq.
(18).

∂

∂t
µ(x, t) + aµp(x, t)

∂

∂x
µ(x, t) + b

∂3

∂x3
µ(x, t) = 0, (28)

where
|η(x, 0)− µ(x, 0)| ≤ ε. (29)

Hence 

|η0(x, t)− µ0(x, t)| ≤ ε,

|η1(x, t)− µ1(x, t)| ≤
∫ t

0
K(x, t)|η0(x, t)− µ0(x, t)| ≤ εK1δ,

|η2(x, t)− µ2(x, t)| ≤ L
∫ t

0
|η1(x, t)− µ1(x, t)|dt ≤ εLK1

δ2

2!
,

...

|ηm+1(x, t)− µm+1(x, t)| ≤ L
∫ t

0
|ηm(x, t)− µm(x, t)|dt ≤ εLK1

δ(m+1)

(m+ 1)!
.

(30)

Hence

|
m+1∑
i=0

ηi(x, t)−
m+1∑
i=0

µi(x, t)| ≤ ε

(
1 +K1δ + LK1

δ2

2!
+ . . .+ LK1

δ(m+1)

(m+ 1)!

)
, (31)

and this completes the proof. It concludes from this theorem that small changes in initial
conditions cause only small changes of the obtained solution.

Theorem 2. Under the assumptions of Theorem (1), the Eq. (18) has a solution which is
stable.

Proof. Consider the fKdVe in the form (18). Suppose that and be the solutions of Eq. (18) and
the following equation, respectively

∂

∂t
µ(x, t) + aµp(x, t)

∂

∂x
µ(x, t) + b

∂3

∂x3
µ(x, t) = 0, (32)

where
|η(x, 0)− µ(x, 0)| ≤ ε. (33)

Hence 

|η0(x, t)− µ0(x, t)| ≤ ε,

|η1(x, t)− µ1(x, t)| ≤
∫ t

0
K(x, t)|η0(x, t)− µ0(x, t)|dt ≤ εK1δ,

|η2(x, t)− µ2(x, t)| ≤ L
∫ t

0
|η1(x, t)− µ1(x, t)|dt ≤ εLK1

δ2

2!
,

...

|ηm+1(x, t)− µm+1(x, t)| ≤ L
∫ t

0
|ηm(x, t)− µm(x, t)|dt ≤ εLK1

δ(m+1)

(m+ 1)!
.

(34)

Hence

|
m+1∑
i=0

ηi(x, t)−
m+1∑
i=0

µi(x, t)| ≤ ε

(
1 +K1δ + LK1

δ2

2!
+ . . .+ LK1

δ(m+1)

(m+ 1)!

)
, (35)

and this completes the proof. It concludes from this theorem that small changes in initial
conditions cause only small changes of the obtained solution.

Theorem 3. Under the assumptions of Theorem (1), the upper bound of error is

em = |η(x, t)−
m∑
i=0

ηi(x, t)| ≤ LK1K2
θ(m+1)α

Γ(1 + (m+ 1)α)
, (36)

where |t| ≤ θ.
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Proof. We prove this theorem by induction. For m = 1, we have

e1 = |
2∑

i=0

ηi(x, t)−
1∑

i=0

ηi(x, t)| ≤ LK1K2
δ2

2!
. (37)

Assume now that, (35) holds for m− 1, it immediately follows from (32) that

em = |
m+1∑
i=0

ηi(x, t)−
m∑
i=0

ηi(x, t)| ≤ LK1K2
δ(m+1)

(m+ 1)!
. (38)

But, from Theorem 1, η(x, t) = limm+1→∞
∑m+1

i=0 ηi(x, t), and therefore

em = |η(x, t)−
m∑
i=0

ηi(x, t)| ≤ LK1K2
δ(m+1)

(m+ 1)!
. (39)

3 Discussion

In this study for different meaningful values of α = 0.7, 0.8, 0.9, 1.0 b = 1, η0 = 0, p = 3
and a = 10, the solitary wave solution of fKdVe is obtained. In Fig.1 (A1,A2,A3 and A4)
the approximate solutions are demonstrated where the solution η is still a single soliton wave
solution for different values of α and the balancing scenario between nonlinearity and dispersion
is still valid. Fig.2 (B1 and B2) present the change of amplitude and width of the soliton due
to the variation of the order α. The obtained outputs show that the different values of α are
uniform both the height and the width of the solitary wave solution. In other words, the order
of fractional derivative can be applied for modifying the shape of the solitary wave without
any change of the dispersion effects and non-linearity in the medium. In Fig.3 (C1 and C2) at
different time values, the behavior between the fractional order and amplitude of the soliton
is explained. Results demonstrated that at the same time, the increasing of fractional order
increases the amplitude of the solitary wave to some values of α.
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Figure 1: The approximate solutions of Eq. (1) for α = 1, 0.9, 0.8, 0.7 are plotted in A1, A2, A3
and A4.

Figure 2: The change of amplitude and width of the soliton due to the variation of the order
α ∈ [0, 1](B1). Also, the change of amplitude and width of the soliton due to the variation of the

order α = 0.8, 0.9, 1 (B2).

Figure 3: The behavior between the fractional order and amplitude of the soliton of Eq. (1) when
α ∈ [0, 1] and t ∈ [0, 10] (C1). The behavior between the fractional order and amplitude of the

soliton of Eq. (1) when α = 0.8, 0.9, 1 and x = 1 (C2).

4 Conclusion

In this article, the Daftardar-Jafari method and fractional complex transform thoroughly
investigated for finding the approximate solution of the nonlinear fKdVe, where the fractional
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operator is defined based on He’s derivation. The obtained output proves that the proposed
scheme is an efficient, robust and simple toll to solve the nonlinear fractional differential equa-
tions in the fields of sciences and engineering. Also, we pointed out that the corresponding
analytical and numerical solutions were obtained on an Intel CORE i7 laptop by means of some
programming codes written in MATLAB software.
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